Files
AHome/esp8266-KUH/src/main.cpp
2020-08-01 13:47:02 +03:00

781 lines
21 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#include "main.h"
const char* host = "esp8266";
const char* ssid = "wf-home";
const char* password = "0ndthnrf";
const char* mqtt_server = "192.168.1.250";
//ESP8266WebServer server(80);
// инициализируем espClient:
WiFiClient espClient;
PubSubClient client(espClient);
LiquidCrystal_PCF8574 lcd(0x27); // set the LCD address to 0x27 for a 16 chars and 2 line display
int nDevs;
DeviceAddress da[4] = {
{0x28, 0xFF, 0x75, 0x3f, 0x93, 0x16, 0x04, 0xce},
{0x28, 0x85, 0xcd, 0x1b, 0x05, 0x00, 0x00, 0x48},
{0x28, 0xff, 0x79, 0x41, 0x88, 0x16, 0x03, 0x5a},
{0x28, 0x20, 0xbe, 0x1b, 0x05, 0x00, 0x00, 0xdc}
};
// Setup a oneWire instance to communicate with any OneWire devices (not just Maxim/Dallas temperature ICs)
OneWire oneWire(ONE_WIRE_BUS);
// Pass our oneWire reference to Dallas Temperature.
DallasTemperature sensors(&oneWire);
float temp1, tHolTop, tHolDown, tMoroz;
//float hum;
float hic;
//float temp2;
//float pres, bmpTemp;
int old_wcC, old_wcH;
int adc;
float temp[4];
const int led = LED_BUILTIN;
const int HOT_SENS = D5;
const int COLD_SENS = D6;
const int LED_STRIPE = D7;
const int LCD_MODE = D8;
const int RSET_FLOOD = D4;
unsigned long oldRun = millis();
bool Flood = false;
TwoWire testWire;
PCF857x pcf8574(0x38, &testWire);
/*const int MB_LED = 0;
const int VLZEM_LED = 1;
const int BOX_LED = 2;
const int FLOOD_LED = 3; */
//Bounce modeLCD_dbnc = Bounce();
//Bounce hot_dbnc = Bounce();
//Bounce cold_dbnc = Bounce();
//Bounce rset_dbnc = Bounce();
bool bMLCD;
short sLCDPage;
BME280I2C::Settings settings(
BME280::OSR_X1,
BME280::OSR_X2,
BME280::OSR_X16,
BME280::Mode_Normal,
BME280::StandbyTime_1000ms,
BME280::Filter_16,
BME280::SpiEnable_False,
BME280I2C::I2CAddr_0x76 // I2C address. I2C specific.
);
BME280I2C bme(settings); // Default : forced mode, standby time = 1000 ms
// Oversampling = pressure ×1, temperature ×1, humidity ×1, filter off,
float temp2(NAN), hum(NAN), pres(NAN);
bool movSensor = 0;
bool MS = 0;
void setup()
{
Serial.begin(115200);
Serial.println("Init LCD");
initLCD();
delay(500);
Serial.println("Init BME280");
int nt = 0;
while (!bme.begin()) {
Serial.println("Could not find a valid BMe280 sensor, check wiring!");
delay(1000);
nt++;
if (nt > 10) break;
}
delay(500);
Serial.println("Init Temperature");
initTemp();
bme.read(pres, temp2, hum, BME280::TempUnit_Celsius, BME280::PresUnit_torr);
pinMode(led, OUTPUT);
digitalWrite(led, 1);
pinMode(HOT_SENS, INPUT_PULLUP);
pinMode(COLD_SENS, INPUT_PULLUP);
pinMode(LED_STRIPE, OUTPUT);
pinMode(LCD_MODE, INPUT_PULLUP);
pinMode(D4, INPUT_PULLUP);
//hot_dbnc.attach(HOT_SENS);
//hot_dbnc.interval(5); // interval in ms
//cold_dbnc.attach(COLD_SENS);
//cold_dbnc.interval(5); // interval in ms
/*modeLCD_dbnc.attach(LCD_MODE);
modeLCD_dbnc.interval(5); // interval in ms
rset_dbnc.attach(RSET_FLOOD);
rset_dbnc.interval(5); // interval in ms*/
EEPROM.begin(16);
//readEEPROM();
//Serial.print("Hot water: ");
//Serial.print(float(wcH.i) / 100.0);
//Serial.print("Cold water: ");
//Serial.println(float(wcC.i) / 100.0);
//Serial.print("LS Set: ");
//Serial.println(ls.i);
//Serial.print("LS DB: ");
//Serial.println(ld.i);
ls.i = 250;
ld.i = 50;
//old_wcC = wcC.i;
//old_wcH = wcH.i;
testWire.begin();//5, 4);
testWire.setClock(100000L);
pcf8574.begin();
bMLCD = false;
readDI();
sLCDPage = 0;
initWiFi();
client.setServer(mqtt_server, 1883);
client.setCallback(callback);
ArduinoOTA.onStart([]() {
Serial.println("Start"); // "Начало OTA-апдейта"
});
ArduinoOTA.onEnd([]() {
Serial.println("\nEnd"); // "Завершение OTA-апдейта"
});
ArduinoOTA.onProgress([](unsigned int progress, unsigned int total) {
Serial.printf("Progress: %u%%\r", (progress / (total / 100)));
});
ArduinoOTA.onError([](ota_error_t error) {
Serial.printf("Error[%u]: ", error);
if (error == OTA_AUTH_ERROR) Serial.println("Auth Failed");
// "Ошибка при аутентификации"
else if (error == OTA_BEGIN_ERROR) Serial.println("Begin Failed");
// "Ошибка при начале OTA-апдейта"
else if (error == OTA_CONNECT_ERROR) Serial.println("Connect Failed");
// "Ошибка при подключении"
else if (error == OTA_RECEIVE_ERROR) Serial.println("Receive Failed");
// "Ошибка при получении данных"
else if (error == OTA_END_ERROR) Serial.println("End Failed");
// "Ошибка при завершении OTA-апдейта"
});
ArduinoOTA.begin();
} // setup()
void loop()
{
unsigned long curTime = millis();
if ((curTime - oldRun) >= 10){
wCycle();
oldRun = curTime;
}
//server.handleClient();
ArduinoOTA.handle();
//movSens();
}
char strFVal[10];
void wCycle()
{
static int sec = 0;
static short stp = 100;
if(stp == 100){
stp = 0;
sec++;
if (sec == 59){
sec = 0;
publishMin();
}
getTemp();
publishSec();
}
if((stp % 20) == 0){
showLCD();
}
if((stp) == 60){
float p, t, h;
bme.read(p, t, h, BME280::TempUnit_Celsius, BME280::PresUnit_torr);
//if (isnan(pres))
pres = p;
//else pres += (p - pres) * 0.05;
//if (isnan(temp2))
temp2 = t;
//else temp2 += (t - temp2) * 0.05;
//if (isnan(hum))
hum = h;
//else hum += (h - hum) * 0.05;
}
readDI();
movSens();
/* if (Flood == true)
pcf8574.write(2, LOW);
else
pcf8574.write(2, HIGH);*/
stp++;
} // loop()
void movSens()
{
adc = analogRead(A0);
if (MS != pcf8574.read(4)){
MS = pcf8574.read(4);
client.publish("/esp8266/move", String(MS).c_str());
}
//Dark
if ((adc < (ls.i - ld.i)) && MS){
pcf8574.write(5, LOW); //digitalWrite(LED_STRIPE, LOW);
}
//Light
if ((adc > (ls.i + ld.i)) || !MS){
pcf8574.write(5, HIGH); //digitalWrite(LED_STRIPE, HIGH);
}
if (MS == true)
lcd.setBacklight(255);
else
lcd.setBacklight(0);
}
void getTemp()
{
static bool readTemp = false;
static byte nSens = 0;
if (readTemp){
sensors.setWaitForConversion(false);
sensors.requestTemperatures();
readTemp = !readTemp;
}
else{
//float t = sensors.getTempC(outTemp);
float t = sensors.getTempC(da[nSens]);//ByIndex(nSens);
Serial.print(nSens);
Serial.print(" Temp readed=");
Serial.println(t);
//to[0] = t;
if ((t > -127) && (t < 85)){
switch(nSens){
case 0:
temp1 += (t - temp1) * 0.05;
break;
case 1:
tHolTop += (t - tHolTop) * 0.05;
break;
case 2:
tHolDown += (t - tHolDown) * 0.05;
break;
case 3:
tMoroz += (t - tMoroz) * 0.05;
break;
}
}
if (++nSens > 3){
nSens = 0;
readTemp = !readTemp;
}
}
//n++;
}
void showLCD()
{
char outS[16];
String s1, s2;
//lcd.clear();
switch (sLCDPage){
case 0:
s1 = String(temp1, 1);
s2 = String(temp2, 1);
snprintf(outS, 17, "O:%5sC I:%4sC ", s1.c_str(), s2.c_str());
lcd.setCursor(0, 0);
lcd.print(outS);
lcd.setCursor(0, 1);
s1 = String(hum, 1);
s2 = String(pres, 0);
snprintf(outS, 17, "H:%4s%% Pr:%2smm", s1.c_str(), s2.c_str());
lcd.print(outS);
break;
case 1:
snprintf(outS, 17, "L:%04d SP:%03d %d ", adc, ls.i, ld.i);
lcd.setCursor(0, 0);
lcd.print(outS);
lcd.setCursor(0, 1);
s1 = String(hum, 1);
s2 = String(hic, 1);
snprintf(outS, 17, "H:%4s%% HI:%4sC ", s1.c_str(), s2.c_str());
lcd.print(outS);
break;
case 2:
snprintf(outS, 17, "L:%04d SP:%03d %d", adc, ls.i, ld.i);
lcd.setCursor(0, 0);
lcd.print(outS);
lcd.setCursor(0, 1);
snprintf(outS, 17, "C:%03.2fH:%03.2f", float(wcC.i) / 100.0, float(wcH.i) / 100.0);
lcd.print(outS);
break;
case 3:
s1 = String(temp1, 1);
s2 = String(tMoroz, 1);
snprintf(outS, 17, "O:%4sC M:%4sC ", s1.c_str(), s2.c_str());
lcd.setCursor(0, 0);
lcd.print(outS);
lcd.setCursor(0, 1);
s1 = String(tHolTop, 1);
s2 = String(tHolDown, 1);
snprintf(outS, 17, "H:%4sC HM:%4sC", s1.c_str(), s2.c_str());
lcd.print(outS);
break;
}
}
void initLCD(){
int error;
Serial.println("LCD...");
Serial.println("Dose: check for LCD");
// See http://playground.arduino.cc/Main/I2cScanner
Wire.begin();
Wire.beginTransmission(0x38);
error = Wire.endTransmission();
Serial.print("Error: ");
Serial.print(error);
if (error == 0) {
Serial.println(": LCD found.");
} else {
Serial.println(": LCD not found.");
} // if
lcd.begin(16, 2); // initialize the lcd
lcd.setBacklight(255);
lcd.clear();
}
/*void handleRoot() {
digitalWrite ( led, 0 );
char temp[400];
int sec = millis() / 1000;
int min = sec / 60;
int hr = min / 60;
snprintf ( temp, 400,
"<html>\
<head>\
<meta http-equiv='refresh' content='5'/>\
<title>ESP8266 Demo</title>\
<style>\
body { background-color: #cccccc; font-family: Arial, Helvetica, Sans-Serif; Color: #000088; }\
</style>\
</head>\
<body>\
<h1>Hello from ESP8266!</h1>\
<p>Uptime: %02d:%02d:%02d</p>\
</body>\
</html>",
hr, min % 60, sec % 60
);
server.send ( 200, "text/html", temp );
//digitalWrite ( led, 1 );
}*/
/*void handleNotFound() {
// digitalWrite ( led, 0 );
String message = "File Not Found\n\n";
message += "URI: ";
message += server.uri();
message += "\nMethod: ";
message += ( server.method() == HTTP_GET ) ? "GET" : "POST";
message += "\nArguments: ";
message += server.args();
message += "\n";
// message += test().c_str();
for ( uint8_t i = 0; i < server.args(); i++ ) {
message += " " + server.argName ( i ) + ": " + server.arg ( i ) + "\n";
}
server.send ( 404, "text/plain", message );
//digitalWrite ( led, 1 );
}*/
/*void handleJSON()
{
//digitalWrite ( led, 0 );
pcf8574.write(7, LOW);
// Allocate JsonBuffer
// Use arduinojson.org/assistant to compute the capacity.
StaticJsonBuffer<500> jsonBuffer;
// Create the root object
JsonObject& root = jsonBuffer.createObject();
root.set<float>("temp1", temp1);
root.set<float>("temp2", temp2);
root.set<float>("press", pres);
root.set<float>("hum", hum);
root.set<float>("vlzem", 0.0);
root.set<float>("qc", float(wcC.i) / 100.0);
root.set<float>("qh", float(wcH.i) / 100.0);
root.set<float>("sp", ls.i);
root.set<float>("db", ld.i);
root.set<int>("vlsp", adc);
root.set<bool>("flood", Flood);
// Create the "analog" array
String s;
root.printTo(s);
server.send(200, "application/json", s);
pcf8574.write(7, HIGH);
//digitalWrite ( led, 0 );
}*/
/*void handleData()
{
//String inArgs = "";
char temp[100];
char tm[3];
String html;
pcf8574.write(7, LOW);
int sec = millis() / 1000;
int min = sec / 60;
int hr = min / 60;
if (server.args() > 0){
for (int i = 0; i < server.args(); i++) {
if (server.argName(i).equals("wcc")){
wcC.i = int(server.arg(i).toFloat() * 100.0f);
writeEEPROM("cc", wcC);
//inArgs += "<p>Write to wcc value: " + server.arg(i) + "</p>";
}
if (server.argName(i).equals("wch")){
wcH.i = int(server.arg(i).toFloat() * 100.0f) ;
writeEEPROM("ch", wcH);
//inArgs += "<p>Write to wcc value: " + server.arg(i) + "</p>";
}
if (server.argName(i).equals("ls_set")){
ls.i = server.arg(i).toInt();
writeEEPROM("ls", ls);
}
if (server.argName(i).equals("ls_db")){
ld.i = server.arg(i).toInt();
writeEEPROM("ld", ld);
}
}
}
html = "<html>";
html += "<head>";
html += "<meta http-equiv='refresh' content='5'/>";
html += "<title>ESP8266 Demo</title>";
html += "<style>body { background-color: #cccccc; font-family: Arial, Helvetica, Sans-Serif; Color: #000088; }</style>";
html += "</head>";
html += "<body>";
html += "<h1>Hello from ESP8266!</h1>";
snprintf(tm, 3, "%02d", hr);
html += "<p>Uptime: " + String(tm);
snprintf(tm, 3, "%02d", min % 60);
html += ":" + String(tm);
snprintf(tm, 3, "%02d", sec % 60);
html += ":" + String(tm) + String("</p>");
sprintf(temp, "<p>Cold Water: %6.2f m3</p><p>Hot Water: %6.2f m3</p><p>Temp: %3.3fC</p><p>LSet: %d, LDB: %d</p>", float(wcC.i) / 100.0, float(wcH.i) / 100.0, temp1, ls.i, ld.i);
html += String(temp);
html += "</body></html>";
server.send ( 200, "text/html", html );
pcf8574.write(7, HIGH);
}*/
void initWiFi()
{
//WiFi.mode(WIFI_STA);
WiFi.begin(ssid, password);
if(WiFi.waitForConnectResult() == WL_CONNECTED){
delay(500);
Serial.print(".");
}
Serial.println("");
Serial.print("Connected to ");
Serial.println(ssid);
Serial.print("IP address: ");
Serial.println(WiFi.localIP());
if (MDNS.begin(host)) {
Serial.println("MDNS responder started");
}
/*server.on ("/", handleData);
server.on("/data", handleData);
server.on("/json", handleJSON);
server.on ("/inline", []() {
server.send ( 200, "text/plain", "this works as well" );
} );
server.onNotFound ( handleNotFound );
server.begin();
Serial.println ( "HTTP server started" );*/
Serial.println("Ready");
Serial.print("IP address: ");
Serial.println(WiFi.localIP());
}
void initTemp()
{
//DeviceAddress da[4];
sensors.begin();
Serial.println("InitTemp");
//oneWire.reset_search();
for (int i = 0; i < 4; i++){
//sensors.getAddress(da[i], i);
sensors.setResolution(da[i], 12);
//printAddress(da[i]);
}
//sensors.getAddress(outTemp, 0);
//sensors.setResolution(outTemp, 12);
sensors.setWaitForConversion(true);
sensors.requestTemperatures();
Serial.println("Request Temp");
/*printAddress(outTemp);
printAddress(holTop);
printAddress(holDown);
printAddress(moroz);*/
temp1 = sensors.getTempC(da[0]);
Serial.println(temp1);
tHolTop = sensors.getTempC(da[1]);
Serial.println(tHolTop);
tHolDown = sensors.getTempC(da[2]);
Serial.println(tHolDown);
tMoroz = sensors.getTempC(da[3]);
Serial.println(tMoroz);
/*delay(100);
tHolTop = sensors.getTempCByIndex(1);
delay(100);
tHolDown = sensors.getTempCByIndex(2);
delay(100);
tMoroz = sensors.getTempCByIndex(0);*/
}
/*void readEEPROM()
{
wcC.b[0] = EEPROM.read(0);
wcC.b[1] = EEPROM.read(1);
wcC.b[2] = EEPROM.read(2);
wcC.b[3] = EEPROM.read(3);
wcH.b[0] = EEPROM.read(4);
wcH.b[1] = EEPROM.read(5);
wcH.b[2] = EEPROM.read(6);
wcH.b[3] = EEPROM.read(7);
ls.b[0] = EEPROM.read(8);
ls.b[1] = EEPROM.read(9);
ls.b[2] = EEPROM.read(10);
ls.b[3] = EEPROM.read(11);
ld.b[0] = EEPROM.read(12);
ld.b[1] = EEPROM.read(13);
ld.b[2] = EEPROM.read(14);
ld.b[3] = EEPROM.read(15);
}*/
/*void writeEEPROM(const char tip[2], uFloat val)
{
short shft = -1;
if (strcmp(tip, "cc") == 0) {
shft = 0;
//Serial.print("Write cold counter: ");
//Serial.println(val.f);
}
if (strcmp(tip, "ch") == 0) {
shft = 4;
//Serial.print("Write Hot counter: ");
//Serial.println(val.f);
}
if (strcmp(tip, "ls") == 0) {
shft = 8;
//Serial.print("Light Sensor Set: ");
//Serial.println(val.i);
}
if (strcmp(tip, "ld") == 0) {
shft = 12;
//Serial.print("Light Sensor DB: ");
//Serial.println(val.i);
}
if (shft == -1) return;
EEPROM.write(shft, val.b[0]);
EEPROM.write(shft + 1, val.b[1]);
EEPROM.write(shft + 2, val.b[2]);
EEPROM.write(shft + 3, val.b[3]);
EEPROM.commit();
}*/
void readDI()
{
/*if (hot_dbnc.update()){
if (hot_dbnc.read() == 1){
wcH.i += 1;
//wcH.f += 0.01;
if (fabs(old_wcH - wcH.i) >= 5){
writeEEPROM("ch", wcH);
old_wcH = wcH.i;
}
}
}
if (cold_dbnc.update()){
if (cold_dbnc.read() == 1)
wcC.i += 1;
if (fabs(old_wcC - wcC.i) >= 5){
writeEEPROM("cc", wcC);
old_wcC = wcC.i;
}
}
if (!pcf8574.read(6))
Flood = true;
if (!pcf8574.read(0)) Flood = false;*/
if (pcf8574.read(1) != bMLCD){
if (bMLCD == false){
sLCDPage++;
if (sLCDPage > 3) sLCDPage = 0;
}
bMLCD = !bMLCD;
}
}
void callback(String topic, byte* message, unsigned int length) {
Serial.print("Message arrived on topic: ");
// "Сообщение прибыло в топик: "
Serial.print(topic);
Serial.print(". Message: "); // ". Сообщение: "
String messageTemp;
for (unsigned int i = 0; i < length; i++) {
Serial.print((char)message[i]);
messageTemp += (char)message[i];
}
Serial.println();
}
void reconnect() {
// заново запускаем цикл, пока не подключимся:
//while (!client.connected()) {
Serial.print("Attempting MQTT connection...");
// "Попытка подключиться к MQTT-брокеру... "
// Пытаемся подключиться:
if (client.connect("ESP8266Client")) {
Serial.println("connected"); // "подключен"
// подписываемся или переподписываемся на топик;
// можно подписаться не только на один, а на несколько топиков
// (что касается конкретно этого примера, то это позволит
// управлять большим количеством светодиодов):
//client.subscribe("esp8266/qc");
//client.subscribe("esp8266/qh");
} else {
Serial.print("failed, rc="); // "подключение не удалось"
Serial.print(client.state());
Serial.println(" try again in 5 seconds");
// "5 секунд до следующей попытки"
// ждем 5 секунд перед тем, как попробовать снова:
//delay(5000);
}
//}
}
void printAddress(DeviceAddress deviceAddress)
{
for (uint8_t i = 0; i < 8; i++)
{
// zero pad the address if necessary
if (deviceAddress[i] < 16) Serial.print("0");
Serial.print(deviceAddress[i], HEX);
}
Serial.println();
}
void publishSec()
{
if (!client.connected()) {
reconnect();
}
if(!client.loop())
client.connect("ESP8266Client");
if (client.connected()) {
pcf8574.write(3, LOW);
dtostrf(temp1, 6, 2, strFVal);
client.publish("/esp8266/temp_out", strFVal);
dtostrf(temp2, 6, 2, strFVal);
client.publish("/esp8266/temp_in", strFVal);
dtostrf(hum, 6, 2, strFVal);
client.publish("/esp8266/humidity", strFVal);
dtostrf(pres, 6, 2, strFVal);
client.publish("/esp8266/pressure", strFVal);
dtostrf(float(wcC.i) / 100.0, 6, 2, strFVal);
/*client.publish("/esp8266/qCold", strFVal);
dtostrf(float(wcH.i) / 100.0, 6, 2, strFVal);
client.publish("/esp8266/qHot", strFVal);
itoa(ls.i, strFVal, 10);*/
client.publish("/esp8266/light_sp", strFVal);
itoa(ld.i, strFVal, 10);
client.publish("/esp8266/light_db", strFVal);
itoa(adc, strFVal, 10);
client.publish("/esp8266/light_cur", strFVal);
//client.publish("/esp8266/flood", String(Flood).c_str());
dtostrf(tHolTop, 6, 2, strFVal);
client.publish("/esp8266/hol_top", strFVal);
dtostrf(tHolDown, 6, 2, strFVal);
client.publish("/esp8266/hol_down", strFVal);
dtostrf(tMoroz, 6, 2, strFVal);
client.publish("/esp8266/moroz", strFVal);
pcf8574.write(3, HIGH);
}
}
void publishMin()
{
if (!client.connected()) {
reconnect();
}
if(!client.loop())
client.connect("ESP8266Client");
if (client.connected()) {
pcf8574.write(7, LOW);
dtostrf(temp1, 6, 1, strFVal);
client.publish("/home/kuh/temp_out", strFVal);
dtostrf(temp2, 6, 1, strFVal);
client.publish("/home/kuh/temp_in", strFVal);
dtostrf(hum, 6, 1, strFVal);
client.publish("/home/kuh/humidity", strFVal);
dtostrf(pres, 6, 1, strFVal);
client.publish("/home/kuh/pressure", strFVal);
itoa(ls.i, strFVal, 10);
client.publish("/home/kuh/light_sp", strFVal);
itoa(ld.i, strFVal, 10);
client.publish("/home/kuh/light_db", strFVal);
itoa(adc, strFVal, 10);
client.publish("/home/kuh/light_cur", strFVal);
dtostrf(tHolTop, 6, 1, strFVal);
client.publish("/home/kuh/hol_top", strFVal);
dtostrf(tHolDown, 6, 1, strFVal);
client.publish("/home/kuh/hol_down", strFVal);
dtostrf(tMoroz, 6, 1, strFVal);
client.publish("/home/kuh/moroz", strFVal);
pcf8574.write(7, HIGH);
}
}